Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 15(4): e0242423, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38470267

RESUMEN

Two growth modes have been described for the filamentous Streptomyces bacteria. Their classic developmental life cycle culminates in the formation of dormant spores, where movement to new environments is mediated through spore dispersal. In contrast, exploratory growth proceeds as a rapidly expanding vegetative mycelium that leads to extensive surface colonization and is associated with the release of volatile compounds that promote alkalinization (and reduced iron bioavailability) of its surrounding environment. Here, we report that exploratory growth in Streptomyces venezuelae can proceed in tandem with classic sporulating development in response to specific nutritional cues. Sporulating exploration is not accompanied by a rise in environmental pH but has the same iron acquisition requirements as conventional exploration. We found that mutants that were defective in their ability to sporulate were unaffected in exploration, but mutants undergoing precocious sporulation were compromised in their exploratory growth and this appeared to be mediated through premature activation of the developmental regulator WhiI. Cell envelope integrity was also found to be critical for exploration, as mutations in the cell envelope stress-responsive extracytoplasmic function sigma factor SigE led to a failure to explore robustly under all exploration-promoting conditions. Finally, in expanding the known exploration-promoting conditions, we discovered that the model species Streptomyces lividans exhibited exploration capabilities, supporting the proposal that exploration is conserved across diverse streptomycetes. IMPORTANCE: Streptomyces bacteria have evolved diverse developmental and metabolic strategies to thrive in dynamic environmental niches. Here, we report the amalgamation of previously disparate developmental pathways, showing that colony expansion via exploration can proceed in tandem with colony sporulation. This developmental integration extends beyond phenotype to include shared genetic elements, with sporulation-specific repressors being required for successful exploration. Comparing this new exploration mode with previously identified strategies has revealed key differences (e.g., no need for environmental alkalinization), and simultaneously allowed us to define unifying requirements for Streptomyces exploration. The "reproductive exploration" phenomenon reported here represents a unique bet-hedging strategy, with the Streptomyces colony engaging in an aggressive colonization strategy while transporting a protected genetic repository.


Asunto(s)
Streptomyces , Animales , Streptomyces/metabolismo , Factores de Transcripción/metabolismo , Hierro/metabolismo , Estadios del Ciclo de Vida , Esporas Bacterianas , Proteínas Bacterianas/metabolismo
2.
mSystems ; 9(4): e0136823, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493407

RESUMEN

Streptomyces bacteria are renowned both for their antibiotic production capabilities and for their cryptic metabolic potential. Their metabolic repertoire is subject to stringent genetic control, with many of the associated biosynthetic gene clusters being repressed by the conserved nucleoid-associated protein Lsr2. In an effort to stimulate new antibiotic production in wild Streptomyces isolates, we leveraged the activity of an Lsr2 knockdown construct and successfully enhanced antibiotic production in the wild Streptomyces isolate WAC07094. We determined that this new activity stemmed from increased levels of the angucycline-like family member saquayamycin. Saquayamycin has both antibiotic and anti-cancer activities, and intriguingly, beyond Lsr2-mediated repression, we found saquayamycin production was also suppressed at high density on solid or in liquid growth media; its levels were greatest in low-density cultures. This density-dependent control was exerted at the level of the cluster-situated regulatory gene sqnR and was mediated in part through the activity of the PhoRP two-component regulatory system, where deleting phoRP led to both constitutive antibiotic production and sqnR expression. This suggests that PhoP functions to repress the expression of sqnR at high cell density. We further discovered that magnesium supplementation could alleviate this density dependence, although its action was independent of PhoP. Finally, we revealed that the nitrogen-responsive regulators GlnR and AfsQ1 could relieve the repression exerted by Lsr2 and PhoP. Intriguingly, we found that this low density-dependent production of saquayamycin was not unique to WAC07094; saquayamycin production by another wild isolate also exhibited low-density activation, suggesting that this spatial control may serve an important ecological function in their native environments.IMPORTANCEStreptomyces specialized metabolic gene clusters are subject to complex regulation, and their products are frequently not observed under standard laboratory growth conditions. For the wild Streptomyces isolate WAC07094, production of the angucycline-family compound saquayamycin is subject to a unique constellation of control factors. Notably, it is produced primarily at low cell density, in contrast to the high cell density production typical of most antibiotics. This unusual density dependence is conserved in other saquayamycin producers and is driven by the pathway-specific regulator SqnR, whose expression is influenced by both nutritional and genetic elements. Collectively, this work provides new insights into an intricate regulatory system governing antibiotic production and indicates there may be benefits to including low-density cultures in antibiotic screening platforms.


Asunto(s)
Antibacterianos , Streptomyces , Antibacterianos/farmacología , Streptomyces/genética , 60432 , Magnesio/metabolismo , Regulación Bacteriana de la Expresión Génica , Antraquinonas
3.
J Bacteriol ; 205(7): e0015323, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37347176

RESUMEN

Streptomyces bacteria have been studied for more than 80 years thanks to their ability to produce an incredible array of antibiotics and other specialized metabolites and their unusual fungal-like development. Their antibiotic production capabilities have ensured continual interest from both academic and industrial sectors, while their developmental life cycle has provided investigators with unique opportunities to address fundamental questions relating to bacterial multicellular growth. Much of our understanding of the biology and metabolism of these fascinating bacteria, and many of the tools we use to manipulate these organisms, have stemmed from investigations using the model species Streptomyces coelicolor and Streptomyces venezuelae. Here, we explore the pioneering work in S. coelicolor that established foundational genetic principles relating to specialized metabolism and development, alongside the genomic and cell biology developments that led to the emergence of S. venezuelae as a new model system. We highlight key discoveries that have stemmed from studies of these two systems and discuss opportunities for future investigations that leverage the power and understanding provided by S. coelicolor and S. venezuelae.


Asunto(s)
Streptomyces coelicolor , Streptomyces , Antibacterianos/metabolismo , Streptomyces coelicolor/genética , Streptomyces/metabolismo , Proteínas Bacterianas/genética
4.
Curr Opin Microbiol ; 71: 102257, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36565538

RESUMEN

Streptomyces are ubiquitous terrestrial bacteria that are renowned for their robust metabolic capabilities and their behavioral flexibility. In competing for environmental niches, these bacteria can employ novel growth and dispersal behaviors. They also wield their diverse metabolic repertoire for everything from maximizing nutrient uptake, to preventing phage replication or inhibiting bacterial and fungal growth. Increasingly, they are found to live in association with plants and insects, often conferring protective benefits to their host courtesy of their ability to produce pathogen-inhibitory antimicrobial compounds. Here, we highlight recent advances in understanding the competitive and cooperative interactions between Streptomyces and phage, microbes, and higher organisms in their environment.


Asunto(s)
Antiinfecciosos , Streptomyces , Animales , Antiinfecciosos/metabolismo , Ambiente , Plantas , Insectos
5.
Proc Natl Acad Sci U S A ; 119(40): e2211052119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161918

RESUMEN

Streptomyces bacteria have a complex life cycle that is intricately linked with their remarkable metabolic capabilities. Exploration is a recently discovered developmental innovation of these bacteria, that involves the rapid expansion of a structured colony on solid surfaces. Nutrient availability impacts exploration dynamics, and we have found that glycerol can dramatically increase exploration rates and alter the metabolic output of exploring colonies. We show here that glycerol-mediated growth acceleration is accompanied by distinct transcriptional signatures and by the activation of otherwise cryptic metabolites including the orange-pigmented coproporphyrin, the antibiotic chloramphenicol, and the uncommon, alternative siderophore foroxymithine. Exploring cultures are also known to produce the well-characterized desferrioxamine siderophore. Mutational studies of single and double siderophore mutants revealed functional redundancy when strains were cultured on their own; however, loss of the alternative foroxymithine siderophore imposed a more profound fitness penalty than loss of desferrioxamine during coculture with the yeast Saccharomyces cerevisiae. Notably, the two siderophores displayed distinct localization patterns, with desferrioxamine being confined within the colony area, and foroxymithine diffusing well beyond the colony boundary. The relative fitness advantage conferred by the alternative foroxymithine siderophore was abolished when the siderophore piracy capabilities of S. cerevisiae were eliminated (S. cerevisiae encodes a ferrioxamine-specific transporter). Our work suggests that exploring Streptomyces colonies can engage in nutrient-targeted metabolic arms races, deploying alternative siderophores that allow them to successfully outcompete other microbes for the limited bioavailable iron during coculture.


Asunto(s)
Deferoxamina , Interacciones Microbianas , Saccharomyces cerevisiae , Sideróforos , Streptomyces , Cloranfenicol/metabolismo , Coproporfirinas/metabolismo , Deferoxamina/metabolismo , Glicerol/metabolismo , Hierro/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Sideróforos/genética , Sideróforos/metabolismo , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo
6.
Methods Mol Biol ; 2489: 157-171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35524050

RESUMEN

Bacteria produce an impressive array of bioactive specialized metabolites, with Streptomyces (and the actinobacteria more generally) being unusually diverse and prolific producers. However, the biosynthetic potential of these organisms has yet to be fully explored, as many of the biosynthetic gene clusters that direct the synthesis of these natural products are transcriptionally silent under laboratory growth conditions. Here, we describe strategies that can be employed to broadly stimulate the expression of biosynthetic gene clusters in Streptomyces and their relatives, follow the transcription of these genes, and assess the antimicrobial activity of the resulting molecules.


Asunto(s)
Actinobacteria , Productos Biológicos , Streptomyces , Actinobacteria/genética , Actinobacteria/metabolismo , Productos Biológicos/metabolismo , Familia de Multigenes , Streptomyces/genética , Streptomyces/metabolismo
7.
Adv Microb Physiol ; 80: 203-236, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35489792

RESUMEN

Streptomyces are soil- and marine-dwelling microbes that need to survive dramatic fluctuations in nutrient levels and environmental conditions. Here, we explore the advances made in understanding how Streptomyces bacteria can thrive in their natural environments. We examine their classical developmental cycle, and the intricate regulatory cascades that govern it. We discuss alternative growth strategies and behaviors, like the rapid expansion and colonization properties associated with exploratory growth, the release of membrane vesicles and S-cells from hyphal tips, and the acquisition of exogenous DNA along the lateral walls. We further investigate Streptomyces interactions with other organisms through the release of volatile compounds that impact nutrient levels, microbial growth, and insect behavior. Finally, we explore the increasingly diverse strategies employed by Streptomyces species in escaping and thwarting phage infections.


Asunto(s)
Streptomyces , Suelo , Streptomyces/genética
8.
J Bacteriol ; 204(4): e0062321, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35254103

RESUMEN

Exploration is a recently discovered mode of growth and behavior exhibited by some Streptomyces species that is distinct from their classical sporulating life cycle. While much has been uncovered regarding initiating environmental conditions and phenotypic outcomes of exploratory growth, how this process is coordinated at a genetic level remains unclear. We used RNA sequencing to survey global changes in the transcriptional profile of exploring cultures over time in the model organism Streptomyces venezuelae. Transcriptomic analyses revealed widespread changes in gene expression impacting diverse cellular functions. Investigations into differentially expressed regulatory elements revealed specific groups of regulatory factors to be impacted, including the expression of several extracytoplasmic function (ECF) sigma factors, second messenger signaling pathways, and members of the whiB-like (wbl) family of transcription factors. Dramatic changes were observed among primary metabolic pathways, especially among respiration-associated genes and the oxidative stress response; enzyme assays confirmed that exploring cultures exhibit an enhanced oxidative stress response compared with classically growing cultures. Changes in the expression of the glycerol catabolic genes in S. venezuelae led to the discovery that glycerol supplementation of the growth medium promotes a dramatic acceleration of exploration. This effect appears to be unique to glycerol as an alternative carbon source, and this response is broadly conserved across other exploration-competent species. IMPORTANCE Exploration represents an alternative growth strategy for Streptomyces bacteria and is initiated in response to other microbes or specific environmental conditions. Here, we show that entry into exploration involves comprehensive transcriptional reprogramming, with an emphasis on changes in primary metabolism and regulatory/signaling functions. Intriguingly, a number of transcription factor classes were downregulated upon entry into exploration. In contrast, respiration-associated genes were strongly induced, and this was accompanied by an enhanced oxidative stress response. Notably, our transcriptional analyses suggested that glycerol may play a role in exploration, and we found that glycerol supplementation dramatically enhanced the exploration response in many streptomycetes. This work sheds new light on the regulatory and metabolic cues that influence a fascinating new microbial behavior.


Asunto(s)
Glicerol , Streptomyces , Aceleración , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Glicerol/metabolismo , Estrés Oxidativo , Streptomyces/genética , Streptomyces/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
mSystems ; 6(6): e0114221, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34783581

RESUMEN

Bacterial gene expression is controlled at multiple levels, with chromosome supercoiling being one of the most global regulators. Global DNA supercoiling is maintained by the orchestrated action of topoisomerases. In Streptomyces, mycelial soil bacteria with a complex life cycle, topoisomerase I depletion led to elevated chromosome supercoiling, changed expression of a significant fraction of genes, delayed growth, and blocked sporulation. To identify supercoiling-induced sporulation regulators, we searched for Streptomyces coelicolor transposon mutants that were able to restore sporulation despite high chromosome supercoiling. We established that transposon insertion in genes encoding a novel two-component system named SatKR reversed the sporulation blockage resulting from topoisomerase I depletion. Transposition in satKR abolished the transcriptional induction of the genes within the so-called supercoiling-hypersensitive cluster (SHC). Moreover, we found that activated SatR also induced the same set of SHC genes under normal supercoiling conditions. We determined that the expression of genes in this region impacted S. coelicolor growth and sporulation. Interestingly, among the associated products is another two-component system (SitKR), indicating the potential for cascading regulatory effects driven by the SatKR and SitKR two-component systems. Thus, we demonstrated the concerted activity of chromosome supercoiling and a hierarchical two-component signaling system that impacts gene activity governing Streptomyces growth and sporulation. IMPORTANCE Streptomyces microbes, soil bacteria with complex life cycle, are the producers of a broad range of biologically active compounds (e.g., antibiotics). Streptomyces bacteria respond to various environmental signals using a complex transcriptional regulation mechanism. Understanding regulation of their gene expression is crucial for Streptomyces application as industrial organisms. Here, on the basis of the results of extensive transcriptomics analyses, we describe the concerted gene regulation by global DNA supercoiling and novel two-component system. Our data indicate that regulated genes encode growth and sporulation regulators. Thus, we demonstrate that Streptomyces bacteria link the global regulatory strategies to adjust life cycle to unfavorable conditions.

10.
mBio ; 12(4): e0107721, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34311581

RESUMEN

Lsr2 is a small nucleoid-associated protein found throughout the actinobacteria. Lsr2 functions similarly to the well-studied H-NS, in that it preferentially binds AT-rich sequences and represses gene expression. In Streptomyces venezuelae, Lsr2 represses the expression of many specialized metabolic clusters, including the chloramphenicol antibiotic biosynthetic gene cluster, and deleting lsr2 leads to significant upregulation of chloramphenicol cluster expression. We show here that Lsr2 likely exerts its repressive effects on the chloramphenicol cluster by polymerizing along the chromosome and by bridging sites within and adjacent to the chloramphenicol cluster. CmlR is a known activator of the chloramphenicol cluster, but expression of its associated gene is not upregulated in an lsr2 mutant strain. We demonstrate that CmlR is essential for chloramphenicol production, and further reveal that CmlR functions to "countersilence" Lsr2's repressive effects by recruiting RNA polymerase and enhancing transcription, with RNA polymerase effectively clearing bound Lsr2 from the chloramphenicol cluster DNA. Our results provide insight into the interplay between opposing regulatory proteins that govern antibiotic production in S. venezuelae, which could be exploited to maximize the production of bioactive natural products in other systems. IMPORTANCE Specialized metabolic clusters in Streptomyces are the source of many clinically prescribed antibiotics. However, many clusters are not expressed in the laboratory due to repression by the nucleoid-associated protein Lsr2. Understanding how Lsr2 represses cluster expression, and how repression can be alleviated, is key to accessing the metabolic potential of these bacteria. Using the chloramphenicol biosynthetic cluster from Streptomyces venezuelae as a model, we explored the mechanistic basis underlying Lsr2-mediated repression, and activation by the pathway-specific regulator CmlR. Lsr2 polymerized along the chromosome and bridged binding sites located within and outside the cluster, promoting repression. Conversely, CmlR was essential for chloramphenicol production and further functioned to countersilence Lsr2 repression by recruiting RNA polymerase and promoting transcription, ultimately removing Lsr2 polymers from the chromosome. Manipulating the activity of both regulators led to a >130× increase in chloramphenicol levels, suggesting that combinatorial regulatory strategies can be powerful tools for maximizing natural product yields.


Asunto(s)
Proteínas Bacterianas/metabolismo , Vías Biosintéticas/genética , Familia de Multigenes , Streptomyces/genética , Streptomyces/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Cloranfenicol/biosíntesis , Cloranfenicol/metabolismo , Regulación Bacteriana de la Expresión Génica , Streptomyces/química , Factores de Transcripción/genética
11.
Proc Biol Sci ; 288(1947): 20202873, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33726600

RESUMEN

Males of some species possess extra reproductive organs called accessory glands which are outgrowths of the testes or sperm duct. These organs have a well-established role in reproduction; however, they also appear to have other important functions that are less understood. Here, we investigate the function of the highly complex accessory glands of a marine toadfish, Porichthys notatus, a fish with two reproductive male types: large care-providing 'guarder' males and small non-caring 'sneaker' males. While both male types have accessory glands, guarder male accessory glands are much larger relative to their body size. We show that accessory gland fluids strongly inhibit the growth of bacterial genera associated with unhealthy eggs and have no effect on the growth of strains isolated from healthy eggs. This antibacterial effect was particularly pronounced for extracts from guarder males. Furthermore, we demonstrate that both healthy and unhealthy plainfin midshipman eggs have diverse but distinct microbial communities that differ in their composition and abundance. The highly specific inhibitory capacity of accessory gland fluid on bacteria from unhealthy eggs was robust across a wide range of ecologically relevant temperatures and salinities. Collectively, these ecological and molecular observations suggest a care function for the accessory gland mediated by antimicrobial agents.


Asunto(s)
Batrachoidiformes , Animales , Antibacterianos/farmacología , Masculino , Reproducción , Espermatozoides , Testículo
12.
Mol Microbiol ; 114(5): 808-822, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32797697

RESUMEN

The second messenger bis-3,5-cyclic di-guanosine monophosphate (c-di-GMP) determines when Streptomyces initiate sporulation. c-di-GMP signals are integrated into the genetic differentiation network by the regulator BldD and the sigma factor σWhiG . However, functions of the development-specific diguanylate cyclases (DGCs) CdgB and CdgC, and the c-di-GMP phosphodiesterases (PDEs) RmdA and RmdB, are poorly understood. Here, we provide biochemical evidence that the GGDEF-EAL domain protein RmdB from S. venezuelae is a monofunctional PDE that hydrolyzes c-di-GMP to 5'pGpG. Despite having an equivalent GGDEF-EAL domain arrangement, RmdA cleaves c-di-GMP to GMP and exhibits residual DGC activity. We show that an intact EAL motif is crucial for the in vivo function of both enzymes since strains expressing protein variants with an AAA motif instead of EAL are delayed in development, similar to null mutants. Transcriptome analysis of ∆cdgB, ∆cdgC, ∆rmdA, and ∆rmdB strains revealed that the c-di-GMP specified by these enzymes has a global regulatory role, with about 20% of all S. venezuelae genes being differentially expressed in the cdgC mutant. Our data suggest that the major c-di-GMP-controlled targets determining the timing and mode of sporulation are genes involved in cell division and the production of the hydrophobic sheath that covers Streptomyces aerial hyphae and spores.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Streptomyces/metabolismo , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/genética , Hidrolasas Diéster Fosfóricas/genética , Liasas de Fósforo-Oxígeno/genética , Sistemas de Mensajero Secundario/genética , Factor sigma/metabolismo , Transducción de Señal/genética , Streptomyces/genética
13.
FEMS Microbiol Rev ; 44(6): 725-739, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-32658291

RESUMEN

Chromosomes are dynamic entities, whose organization and structure depend on the concerted activity of DNA-binding proteins and DNA-processing enzymes. In bacteria, chromosome replication, segregation, compaction and transcription are all occurring simultaneously, and to ensure that these processes are appropriately coordinated, all bacteria employ a mix of well-conserved and species-specific proteins. Unusually, Streptomyces bacteria have large, linear chromosomes and life cycle stages that include multigenomic filamentous hyphae and unigenomic spores. Moreover, their prolific secondary metabolism yields a wealth of bioactive natural products. These different life cycle stages are associated with profound changes in nucleoid structure and chromosome compaction, and require distinct repertoires of architectural-and regulatory-proteins. To date, chromosome organization is best understood during Streptomyces sporulation, when chromosome segregation and condensation are most evident, and these processes are coordinated with synchronous rounds of cell division. Advances are, however, now being made in understanding how chromosome organization is achieved in multigenomic hyphal compartments, in defining the functional and regulatory interplay between different architectural elements, and in appreciating the transcriptional control exerted by these 'structural' proteins.


Asunto(s)
Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Proteínas Bacterianas/metabolismo
14.
Annu Rev Microbiol ; 74: 409-430, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32667838

RESUMEN

Bacteria produce a multitude of volatile compounds. While the biological functions of these deceptively simple molecules are unknown in many cases, for compounds that have been characterized, it is clear that they serve impressively diverse purposes. Here, we highlight recent studies that are uncovering the volatile repertoire of bacteria, and the functional relevance and impact of these molecules. We present work showing the ability of volatile compounds to modulate nutrient availability in the environment; alter the growth, development, and motility of bacteria and fungi; influence protist and arthropod behavior; and impact plant and animal health. We further discuss the benefits associated with using volatile compounds for communication and competition, alongside the challenges of studying these molecules and their functional roles. Finally, we address the opportunities these compounds present from commercial, clinical, and agricultural perspectives.


Asunto(s)
Bacterias/metabolismo , Interacciones Microbianas , Compuestos Orgánicos Volátiles/metabolismo , Bacterias/crecimiento & desarrollo , Bacterias/patogenicidad , Fenómenos Fisiológicos Bacterianos , Agentes de Control Biológico , Eucariontes/fisiología , Hongos/crecimiento & desarrollo , Hongos/metabolismo , Plantas/microbiología , Compuestos Orgánicos Volátiles/química
15.
J Biol Chem ; 295(27): 9171-9182, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32434927

RESUMEN

Bacterial dormancy can take many forms, including formation of Bacillus endospores, Streptomyces exospores, and metabolically latent Mycobacterium cells. In the actinobacteria, including the streptomycetes and mycobacteria, the rapid resuscitation from a dormant state requires the activities of a family of cell-wall lytic enzymes called resuscitation-promoting factors (Rpfs). Whether Rpf activity promotes resuscitation by generating peptidoglycan fragments (muropeptides) that function as signaling molecules for spore germination or by simply remodeling the dormant cell wall has been the subject of much debate. Here, to address this question, we used mutagenesis and peptidoglycan binding and cleavage assays to first gain broader insight into the biochemical function of diverse Rpf enzymes. We show that their LysM and LytM domains enhance Rpf enzyme activity; their LytM domain and, in some cases their LysM domain, also promoted peptidoglycan binding. We further demonstrate that the Rpfs function as endo-acting lytic transglycosylases, cleaving within the peptidoglycan backbone. We also found that unlike in other systems, Rpf activity in the streptomycetes is not correlated with peptidoglycan-responsive Ser/Thr kinases for cell signaling, and the germination of rpf mutant strains could not be stimulated by the addition of known germinants. Collectively, these results suggest that in Streptomyces, Rpfs have a structural rather than signaling function during spore germination, and that in the actinobacteria, any signaling function associated with spore resuscitation requires the activity of additional yet to be identified enzymes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Citocinas/metabolismo , Streptomyces/metabolismo , Actinobacteria/metabolismo , Proteínas Bacterianas/fisiología , Citocinas/fisiología , Endopeptidasas/metabolismo , Mycobacterium tuberculosis/metabolismo , Peptidoglicano/metabolismo , Esporas Bacterianas/metabolismo
16.
Biochim Biophys Acta Gen Subj ; 1863(11): 129405, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31376411

RESUMEN

BACKGROUND: Nucleoid associated proteins (NAPs) are essential for chromosome condensation in bacterial cells. Despite being a diverse group, NAPs share two common traits: they are small, oligomeric proteins and their oligomeric state is critical for DNA condensation. Streptomyces coelicolor IHF (sIHF) is an actinobacterial-specific nucleoid-associated protein that despite its name, shares neither sequence nor structural homology with the well-characterized Escherichia coli IHF. Like E. coli IHF, sIHF is needed for efficient nucleoid condensation, morphological development and antibiotic production in S. coelicolor. METHODS: Using a combination of crystallography, small-angle X-ray scattering, electron microscopy and structure-guided functional assays, we characterized how sIHF binds and remodels DNA. RESULTS: The structure of sIHF bound to DNA revealed two DNA-binding elements on opposite surfaces of the helix bundle. Using structure-guided functional assays, we identified an additional surface that drives DNA binding in solution. Binding by each element is necessary for both normal development and antibiotic production in vivo, while in vitro, they act collectively to restrain negative supercoils. CONCLUSIONS: The cleft defined by the N-terminal and the helix bundle of sIHF drives DNA binding, but the two additional surfaces identified on the crystal structure are necessary to stabilize binding, remodel DNA and maintain wild-type levels of antibiotic production. We propose a model describing how the multiple DNA-binding elements enable oligomerization-independent nucleoid condensation. GENERAL SIGNIFICANCE: This work provides a new dimension to the mechanistic repertoire ascribed to bacterial NAPs and highlights the power of combining structural biology techniques to study sequence unspecific protein-DNA interactions.


Asunto(s)
ADN Bacteriano/química , Factores de Integración del Huésped/química , Streptomyces coelicolor/química , Sitios de Unión , Cristalografía por Rayos X , Conformación Proteica en Hélice alfa
17.
Elife ; 82019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31215866

RESUMEN

Lsr2 is a nucleoid-associated protein conserved throughout the actinobacteria, including the antibiotic-producing Streptomyces. Streptomyces species encode paralogous Lsr2 proteins (Lsr2 and Lsr2-like, or LsrL), and we show here that of the two, Lsr2 has greater functional significance. We found that Lsr2 binds AT-rich sequences throughout the chromosome, and broadly represses gene expression. Strikingly, specialized metabolic clusters were over-represented amongst its targets, and the cryptic nature of many of these clusters appears to stem from Lsr2-mediated repression. Manipulating Lsr2 activity in model species and uncharacterized isolates resulted in the production of new metabolites not seen in wild type strains. Our results suggest that the transcriptional silencing of biosynthetic clusters by Lsr2 may protect Streptomyces from the inappropriate expression of specialized metabolites, and provide global control over Streptomyces' arsenal of signaling and antagonistic compounds.


Asunto(s)
Proteínas Bacterianas/metabolismo , Núcleo Celular/metabolismo , Streptomyces/metabolismo , Antibacterianos/biosíntesis , Proteínas Bacterianas/genética , Sitios de Unión , Vías Biosintéticas/genética , Cromosomas Bacterianos/genética , Regulación Bacteriana de la Expresión Génica , Transferencia de Gen Horizontal/genética , Genes Bacterianos , Metaboloma/genética , Mutación/genética , Fenotipo , Streptomyces/genética , Volatilización
18.
Curr Opin Microbiol ; 51: 9-15, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30999085

RESUMEN

Bacteria and fungi are prolific producers of secondary metabolites, yet they house a multitude of silent biosynthetic gene clusters that are poorly expressed and whose products are unknown or 'cryptic'. Stimulating the expression of these clusters and accessing their associated molecules is a major priority, as they are expected to have a veritable cornucopia of bioactivites. Here, we highlight three strategies that have been the focus of recent developments. Co-culture and elicitor screening, genetic regulator investigation and exploitation, and pathway refactoring and heterologous cluster expression, are collectively being employed to activate the expression of cryptic biosynthetic gene clusters (BGCs), and stimulate the production of novel metabolites having diverse activities.


Asunto(s)
Bacterias/metabolismo , Hongos/metabolismo , Familia de Multigenes , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/genética
19.
mBio ; 10(2)2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837334

RESUMEN

Bacteria and fungi produce a wide array of volatile organic compounds (VOCs), and these can act as chemical cues or as competitive tools. Recent work has shown that the VOC trimethylamine (TMA) can promote a new form of Streptomyces growth, termed "exploration." Here, we report that TMA also serves to alter nutrient availability in the area surrounding exploring cultures: TMA dramatically increases the environmental pH and, in doing so, reduces iron availability. This, in turn, compromises the growth of other soil bacteria and fungi. In response to this low-iron environment, Streptomyces venezuelae secretes a suite of differentially modified siderophores and upregulates genes associated with siderophore uptake. Further reducing iron levels by limiting siderophore uptake or growing cultures in the presence of iron chelators enhanced exploration. Exploration was also increased when S. venezuelae was grown in association with the related low-iron- and TMA-tolerant Amycolatopsis bacteria, due to competition for available iron. We are only beginning to appreciate the role of VOCs in natural communities. This work reveals a new role for VOCs in modulating iron levels in the environment and implies a critical role for VOCs in modulating the behavior of microbes and the makeup of their communities. It further adds a new dimension to our understanding of the interspecies interactions that influence Streptomyces exploration and highlights the importance of iron in exploration modulation.IMPORTANCE Microbial growth and community interactions are influenced by a multitude of factors. A new mode of Streptomyces growth-exploration-is promoted by interactions with the yeast Saccharomycescerevisiae and requires the emission of trimethylamine (TMA), a pH-raising volatile compound. We show here that TMA emission also profoundly alters the environment around exploring cultures. It specifically reduces iron availability, and this in turn adversely affects the viability of surrounding microbes. Paradoxically, Streptomyces bacteria thrive in these iron-depleted niches, both rewiring their gene expression and metabolism to facilitate iron uptake and increasing their exploration rate. Growth in close proximity to other microbes adept at iron uptake also enhances exploration. Collectively, the data from this work reveal a new role for bacterial volatile compounds in modulating nutrient availability and microbial community behavior. The results further expand the repertoire of interspecies interactions and nutrient cues that impact Streptomyces exploration and provide new mechanistic insight into this unique mode of bacterial growth.


Asunto(s)
Actinobacteria/metabolismo , Hierro/metabolismo , Metilaminas/metabolismo , Interacciones Microbianas , Microbiota/efectos de los fármacos , Saccharomyces/metabolismo , Streptomyces/metabolismo , Actinobacteria/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Saccharomyces/crecimiento & desarrollo , Streptomyces/crecimiento & desarrollo , Oligoelementos/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
20.
J Bacteriol ; 200(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29084856

RESUMEN

Streptomyces has an extensive natural product repertoire, including most of the naturally derived antibiotics. Understanding the control of natural product biosynthesis is central to antibiotic discovery and production optimization. Here, Hou et al. (J. Bacteriol. 200:00447-17, 2018, https://doi.org/10.1128/JB.00447-17) report the identification and characterization of a novel regulator-LmbU-that functions primarily as an activator of lincomycin production in Streptomyces lincolnensis Importantly, members of this new regulator family are associated with natural product biosynthetic clusters throughout the streptomycetes and their actinomycete relatives.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Streptomyces , Antibacterianos , Lincomicina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...